Nonhuman primate models for diabetic ocular neovascularization using AAV2-mediated overexpression of vascular endothelial growth factor.

نویسندگان

  • Corinna Lebherz
  • Albert M Maguire
  • Alberto Auricchio
  • Waixing Tang
  • Tomas S Aleman
  • Zhangyong Wei
  • Rebecca Grant
  • Artur V Cideciyan
  • Samuel G Jacobson
  • James M Wilson
  • Jean Bennett
چکیده

Neovascularization leads to blindness in numerous ocular diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and sickle cell disease. More effective and stable treatments for ocular neovascularization are needed, yet there are major limitations in the present animal models. To develop primate models of diabetic retinopathy and choroidal neovascularization, rhesus monkeys were injected subretinally or intravitreally with an adeno-associated virus (AAV)-2 vector carrying the cDNA encoding human vascular endothelial growth factor (VEGF). Overexpression of VEGF was measured by intraocular fluid sampling over time. Neovascularization was evaluated by ophthalmoscopy through angiography, optical coherence tomography, and ultimately histopathology. Overexpression of VEGF through AAV2 results in rapid development of features of diabetic retinopathy or macular edema, depending on the targeted cell type/mode of production of VEGF and diffusion of VEGF. Nonhuman primate models will be useful in testing long-term safety and efficacy of novel therapeutic agents for blinding neovascular diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decrease of Serum Vascular Endothelial Growth Factor, along with its Ocular Level, after the Periocular Injection of Celecoxib and Propranolol in Streptozotocin-induced Diabetic Mouse Model

Background: There is a direct correlation between ocular vascular endothelial growth factor (VEGF) level and progression of pathological outcomes in diabetic retinopathy. In our previous study, the periocular administration of propranolol and celecoxib could significantly reduce ocular VEGF levels in a diabetic mouse model. Here, we investigated the changes of serum VEGF after ...

متن کامل

An antisense oligodeoxynucleotide against vascular endothelial growth factor in a nonhuman primate model of iris neovascularization.

OBJECTIVE To evaluate an antisense oligodeoxynucleotide (AS-ODN) targeted against vascular endothelial growth factor for its effects on ocular angiogenesis and its intraocular localization in a nonhuman primate model of iris neovascularization. METHODS Bilateral laser retinal vein occlusion was performed in monkeys, followed by intravitreal injections of a vascular endothelial growth factor-s...

متن کامل

A novel bispecific molecule delivered by recombinant AAV2 suppresses ocular inflammation and choroidal neovascularization

Elevated vascular endothelial growth factor (VEGF) and complement activation are implicated in the pathogenesis of different ocular diseases. The objective of this study was to investigate the hypothesis that dual inhibition of both VEGF and complement activation would confer better protection against ocular inflammation and neovascularization. In this study, we engineered a secreted chimeric V...

متن کامل

Therapeutic Effects of PPARα Agonists on Diabetic Retinopathy in Type 1 Diabetes Models

Retinal vascular leakage, inflammation, and neovascularization (NV) are features of diabetic retinopathy (DR). Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has shown robust protective effects against DR in type 2 diabetic patients, but its effects on DR in type 1 diabetes have not been reported. This study evaluated the efficacy of fenofibrate on DR in type 1 dia...

متن کامل

Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 2005